Signing transactions
Overview
Before a transaction can be sent to the Bitcoin network, each input must be signed.
Signing transactions with threshold ECDSA
Canisters can sign transactions form addresses using ECDSA by using the
sign_with_ecdsa
API.
The following snippet shows a simplified example of how to sign a Bitcoin transaction for the special case where all the inputs are referencing outpoints that are owned by own_address
and own_address
is a P2PKH
address.
- Motoko
- Rust
public func sign_transaction(
own_public_key : [Nat8],
own_address : BitcoinAddress,
transaction : Transaction,
key_name : Text,
derivation_path : [Blob],
signer : SignFun,
) : async [Nat8] {
// Obtain the scriptPubKey of the source address which is also the
// scriptPubKey of the Tx output being spent.
switch (Address.scriptPubKey(#p2pkh own_address)) {
case (#ok scriptPubKey) {
let scriptSigs = Array.init<Script>(transaction.txInputs.size(), []);
// Obtain scriptSigs for each Tx input.
for (i in Iter.range(0, transaction.txInputs.size() - 1)) {
let sighash = transaction.createSignatureHash(
scriptPubKey, Nat32.fromIntWrap(i), SIGHASH_ALL);
let signature_sec = await signer(key_name, derivation_path, Blob.fromArray(sighash));
let signature_der = Blob.toArray(Der.encodeSignature(signature_sec));
// Append the sighash type.
let encodedSignatureWithSighashType = Array.tabulate<Nat8>(
signature_der.size() + 1, func (n) {
if (n < signature_der.size()) {
signature_der[n]
} else {
Nat8.fromNat(Nat32.toNat(SIGHASH_ALL))
};
});
// Create Script Sig which looks like:
// ScriptSig = <Signature> <Public Key>.
let script = [
#data encodedSignatureWithSighashType,
#data own_public_key
];
scriptSigs[i] := script;
};
// Assign ScriptSigs to their associated TxInputs.
for (i in Iter.range(0, scriptSigs.size() - 1)) {
transaction.txInputs[i].script := scriptSigs[i];
};
};
// Verify that our own address is P2PKH.
case (#err msg)
Debug.trap("This example supports signing p2pkh addresses only.");
};
transaction.toBytes()
};
async fn sign_transaction<SignFun, Fut>(
own_public_key: &[u8],
own_address: &Address,
mut transaction: Transaction,
key_name: String,
derivation_path: Vec<Vec<u8>>,
signer: SignFun,
) -> Transaction
where
SignFun: Fn(String, Vec<Vec<u8>>, Vec<u8>) -> Fut,
Fut: std::future::Future<Output = Vec<u8>>,
{
// Verify that our own address is P2PKH.
assert_eq!(
own_address.address_type(),
Some(AddressType::P2pkh),
"This example supports signing p2pkh addresses only."
);
let txclone = transaction.clone();
for (index, input) in transaction.input.iter_mut().enumerate() {
let sighash =
txclone.signature_hash(index, &own_address.script_pubkey(), SIG_HASH_TYPE.to_u32());
let signature = signer(key_name.clone(), derivation_path.clone(), sighash.to_vec()).await;
// Convert signature to DER.
let der_signature = sec1_to_der(signature);
let mut sig_with_hashtype = der_signature;
sig_with_hashtype.push(SIG_HASH_TYPE.to_u32() as u8);
input.script_sig = Builder::new()
.push_slice(sig_with_hashtype.as_slice())
.push_slice(own_public_key)
.into_script();
input.witness.clear();
}
transaction
}
Signing transactions with threshold Schnorr
Canisters can sign transactions from addresses using Schnorr by using the
sign_with_schnorr
API.
Signing P2TR untweaked key path transactions
The following snippet shows a simplified example of how to sign a Bitcoin
transaction for the special case where all the inputs are referencing outpoints
that are owned by own_address
and own_address
is a P2TR
untweaked key path
address.
It's important to make sure that own_address
is a P2TR
untweaked key path address. If own_address
is a tweaked key path address,
the verification of the Bitcoin transaction will fail. See the generating
addresses section for more details.
- Rust
// Sign a P2TR key spend transaction.
//
// IMPORTANT: This method is for demonstration purposes only and it only
// supports signing transactions if:
//
// 1. All the inputs are referencing outpoints that are owned by `own_address`.
// 2. `own_address` is a P2TR script path spend address.
async fn schnorr_sign_key_spend_transaction<SignFun, Fut>(
own_address: &Address,
mut transaction: Transaction,
prevouts: &[TxOut],
key_name: String,
derivation_path: Vec<Vec<u8>>,
signer: SignFun,
) -> Transaction
where
SignFun: Fn(String, Vec<Vec<u8>>, Vec<u8>) -> Fut,
Fut: std::future::Future<Output = Vec<u8>>,
{
assert_eq!(own_address.address_type(), Some(AddressType::P2tr),);
for input in transaction.input.iter_mut() {
input.script_sig = ScriptBuf::default();
input.witness = Witness::default();
input.sequence = Sequence::ENABLE_RBF_NO_LOCKTIME;
}
let num_inputs = transaction.input.len();
for i in 0..num_inputs {
let mut sighasher = SighashCache::new(&mut transaction);
let signing_data = sighasher
.taproot_key_spend_signature_hash(
i,
&bitcoin::sighash::Prevouts::All(&prevouts),
TapSighashType::Default,
)
.expect("Failed to ecnode signing data")
.as_byte_array()
.to_vec();
let raw_signature = signer(
key_name.clone(),
derivation_path.clone(),
signing_data.clone(),
)
.await;
// Update the witness stack.
let witness = sighasher.witness_mut(i).unwrap();
let signature = bitcoin::taproot::Signature {
sig: Signature::from_slice(&raw_signature).expect("failed to parse signature"),
hash_ty: TapSighashType::Default,
};
witness.push(&signature.to_vec());
}
transaction
}
Signing P2TR script path transactions
The following snippet shows a simplified example of how to sign a Bitcoin
transaction for the special case where all the inputs are referencing outpoints
that are owned by own_address
and own_address
is a P2TR
script path
address.
- Rust
// Sign a P2TR script spend transaction.
//
// IMPORTANT: This method is for demonstration purposes only and it only
// supports signing transactions if:
//
// 1. All the inputs are referencing outpoints that are owned by `own_address`.
// 2. `own_address` is a P2TR script path spend address.
async fn schnorr_sign_script_spend_transaction<SignFun, Fut>(
own_address: &Address,
mut transaction: Transaction,
prevouts: &[TxOut],
control_block: &ControlBlock,
script: &ScriptBuf,
key_name: String,
derivation_path: Vec<Vec<u8>>,
signer: SignFun,
) -> Transaction
where
SignFun: Fn(String, Vec<Vec<u8>>, Vec<u8>) -> Fut,
Fut: std::future::Future<Output = Vec<u8>>,
{
assert_eq!(own_address.address_type(), Some(AddressType::P2tr),);
for input in transaction.input.iter_mut() {
input.script_sig = ScriptBuf::default();
input.witness = Witness::default();
input.sequence = Sequence::ENABLE_RBF_NO_LOCKTIME;
}
let num_inputs = transaction.input.len();
for i in 0..num_inputs {
let mut sighasher = SighashCache::new(&mut transaction);
let leaf_hash = TapLeafHash::from_script(&script, LeafVersion::TapScript);
let signing_data = sighasher
.taproot_script_spend_signature_hash(
i,
&bitcoin::sighash::Prevouts::All(&prevouts),
leaf_hash,
TapSighashType::Default,
)
.expect("Failed to ecnode signing data")
.as_byte_array()
.to_vec();
let raw_signature = signer(
key_name.clone(),
derivation_path.clone(),
signing_data.clone(),
)
.await;
// Update the witness stack.
let witness = sighasher.witness_mut(i).unwrap();
witness.clear();
let signature = bitcoin::taproot::Signature {
sig: Signature::from_slice(&raw_signature).expect("failed to parse signature"),
hash_ty: TapSighashType::Default,
};
witness.push(signature.to_vec());
witness.push(&script.to_bytes());
witness.push(control_block.serialize());
}
transaction
}
Learn more
Learn more about using the threshold ECDSA signing API.
Learn more about using the threshold Schnorr signing API.
Next steps
Now that your transaction is signed, it can be submitted to the Bitcoin network.